

APPLICATION OF GENOMIC TOOLS AND PERSPECTIVES

Vivaldi Final Conference

Romain Morvezen, Florian Enez, Pierrick Haffray

26/11/2010

Genomic tools for disease resistance

What is a genomic tool?

• Position on the genome that exhibits variation (for example, a SNP) between individuals, population

Genomic tools for disease resistance

What is a genomic tool?

- Position on the genome that exhibits variation (for example, a SNP) between individuals, population
- Can be used for different purposes : genetic variability estimation, parentage assignment, genomic selection, *marker assisted selection*

Genomic tools for disease resistance

What is a genomic tool ?

- Position on the genome that exhibits variation (for example, a SNP) between individuals, population
- Can be used for different purposes : genetic variability estimation, parentage assignment, genomic selection, *marker assisted selection*

 For marker assisted selection, you need to find an association between your markers and the phenotype of interest -> QTL (quantitative trait loci)

>2.2 millions tons/year

Number of outbreaks per year in Norwegian farmed salmons

IPN disease

- Viral disease
- Up to 70% mortality in salmon fry
 - Up to 40% mortality post-smolt (transfer to seawater)

Infected fish

A case-study from the salmon industry Houston et al. 2008 - QTL identification

Copyright © 2008 by the Genetics Society of America DOI: 10.1534/genetics.107.082974

Major Quantitative Trait Loci Affect Resistance to Infectious Pancreatic Necrosis in Atlantic Salmon (Salmo salar)

Ross D. Houston,^{*,1} Chris S. Haley,^{*} Alastair Hamilton,[†] Derrick R. Guy,[†] Alan E. Tinch,[†] John B. Taggart,[‡] Brendan J. McAndrew[‡] and Stephen C. Bishop^{*}

*Division of Genetics and Genomics, Roslin Institute and Royal (Dick) School of Veterinary Studies, Roslin BioCentre, Midlothian EH25 9PS, United Kingdom, [†]Landcatch Natural Selection, Alloa, Clackmannanshire FK10 3LP, United Kingdom and [‡]Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, United Kingdom

> Manuscript received October 5, 2007 Accepted for publication December 14, 2007

A case-study from the salmon industry Houston et al. 2008 - QTL identification

One region of the genome (on LG21) strongly associated with resistance or susceptibility

R = Resistant ; S = Susceptible

Is it applicable/ reproductible ?

<u>OTL used in a farming context</u>

QTL used in a farming context

AquaGen

QTL used in a farming context

12

INVESTIGATION

A Genome-Wide Association Study for Host Resistance to Ostreid Herpesvirus in Pacific Oysters (*Crassostrea gigas*)

Alejandro P. Gutierrez,* Tim P. Bean,[†] Chantelle Hooper,[†] Craig A. Stenton,[†] Matthew B. Sanders,[†] Richard K. Paley,[†] Pasi Rastas,[‡] Michaela Bryrom,[§] Oswald Matika,* and Ross D. Houston* * The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom, [†]Centre for Environment Fisheries and Aquaculture Science (Cefas) Weymouth Laboratory, Dorset DT4 8UB, United Kingdom, [‡]Department of Biosciences, Ecological Genetics Research Unit, University of Helsinki, Helsinki, Finland, and [§]Guernsey Sea Farms Ltd. Parc Lane, Vale, Guernsey GY3 5EQ

ORCID ID: 0000-0003-1805-0762 (R.D.H.)

Gutierrez et al 2018, C. gigas and OsHV-1

Association with few markers, poorly mapped, no big QTL with substantial effect Herpes resistance in oyster seems to be polygenic

Gutierrez et al 2019, on C. gigas and OsHV-1

-> same results : polygenic trait

Available tools for genomic selection

High density public SNP arrays available in aquaculture species

Species	Number SNPs	Assay Type	Reference
Atlantic salmon (<i>Salmo salar</i>)	132K	Affymetrix Axiom	Houston et al., 2014
Nile tilapia (Oreochromis niloticus)	50K	Illumina	Yanez, ISGA 2018
Channel catfish (<i>Ictalurus punctatus</i>) & blue catfish (<i>Ictalurus furcatus</i>)	250K	Affymetrix Axiom	Liu et al., 2014
Channel catfish (<i>Ictalurus punctatus</i>) & blue catfish (<i>Ictalurus furcatus</i>)	690К	Affymetrix Axiom	Zeng et al., 2017
Rainbow trout (Oncorhynchus mykiss)	57K	Affymetrix Axiom	Palti et al., 2015
European sea bass (<i>Dicentrarchus labrax</i>)	57k	Affymetrix Axiom	Allal et al. ISGA 2018
Pacific oyster (<i>Crassostrea gigas</i>)	190K	Affymetrix Axiom	Qi et al., 2017
Pacific oyster (<i>Crassostrea gigas</i>) & European flat oyster (<i>Ostrea edulis</i>)	41K / 15K	Affymetrix Axiom	Gutierrez et al., 2017

Genomic selection

Examples in aquaculture :

Farmed Atlantic salmon resistance to sea lice

h² = 0,22-0,33 Array: 35K (subset of the 132K array) 1119 individuals with phenotype and genotype

BCWD resistance in rainbow trout (Vallejo et al. 2017)

h² = 0,33-0,37

Array: 35K

1473 individuals with phenotype and genotype

+ 6420 individuals with phenotype

 Application of DNA markers : parentage assignment
 GenOyster

 Image: Second structure
 Image: Second structure

 Total assignment rate
 89,4%

 94,3%
 94,3%

 Total effective assignment rate
 95,1%

1

-> Effective tool for parentage assignment in oyster commercial hatcheries

France Naissain

72,1%

98,5%

86,2%

91,6%

Application of DNA markers : parentage assignement

Total assignment rate Total effective assignment rate

GenOyster

94,3[%] 96**,2%**

Vaturellement...

Satmar...

-> Effective tool for parentage assignment in oyster commercial hatcheries

ZGENORMEAU

Haliotis tuberculata Total effective assignment rate : 98.9% -> Effective tool for parentage assignment in abalone commercial hatcheries ₂₄

Application of DNA markers : genomic selection

Oysters genomic array

40K SNP (~15K good quality)

Gutierrez et al 2017

	Sample N	MAF > 0	
		# SNPs	Average MAF
UK (combined) ^a	56	27,313	0.186
GSF + parents	38	26,549	0.19
Maldon	9	22,079	0.216
Sea Salter	9	22,821	0.214
Average within UK populations ^b		23,816	0.207
France (combined) ^a	52	26,891	0.182
lfremer	13	23,010	0.203
Hatchery 1	10	21,479	0.217
Hatchery 2	10	20,141	0.221
Hatchery 3	10	21,730	0.215
Hatchery 4	9	22,052	0.214
Average within French populations ^b		21,682	0.214
All populations (combined) ^a	108	27,697	0.182

MAF, minor allele frequency; #, number; SNPs, single nucleotide polymorphisms; Ho, level of genetic variability in terms of ob variability in terms of expected heterozygosity; GSF, Guernsey Sea Farm.

^aValues were obtained by the analysis of the combined dataset, not the average of the individual populations. ^bValues represent the within-population average.

Next challenges for shellfish breeding

- Estimation of heritabilities and identification of QTLs for interest traits : production traits, disease resistance...
- Confirm genetic gains by testing offspring of selected broodstock
- Development of methods to phenotype shellfish (for ex. controlled challenges for breeding programs)
- Adaptation of breeding programs to new tools implementing genomic selection
- Genomic ressources for other commercially important shellfish species

