

First steps toward selection in the Manila clam, *Ruditapes philippinarum*.

Work Package 3: Genetic solutions for disease resistance / tolerance

• Manila clam aquaculture and diseases

• Objectives and experimental design

• First estimations of genetic parameters for growth and disease resistance

• Conclusions and perspectives

The Manila clam as a cultured species

- Venerid clam, wide salinity and temperature ranges, high growth and fecundity
- 1970s introduction to France for aquaculture, then the rest of Europe
- 25% of cultured mollusk production worldwide (23% of market value)

Global distribution of Manila clam populations

The Manila clam as a cultured species

- Venerid clam, wide salinity and temperature ranges, high growth and fecundity
- 1970s introduction to France for aquaculture, then the rest of Europe
- 25% of cultured mollusk production worldwide (23% of market value)

The Manila clam, Ruditapes philippinarum

- EU production limited and precarious
- Impact of pathogens on mortality, seed availability, growth...

FAO production data (t) between 2000 and 2015

Infections with Perkinsus olseni

Protozoan parasite Perkinsus olseni

- Chronic infection, reduced respiration, growth, fecundity
- Impact on natural seed availability

Difficulties in disease management:

- Open water farming → no treatment options through antibiotics or cleaning
- Dependency on innate immunity → vaccination is not viable

Fig. 1. Zoospore (left) and merozoites (right) of Perkinsus olseni.

High variability in host response \rightarrow potential for selection

Objective

- Is there a genetic basis for resistance?
- Can selection for disease resistance and other production traits improve clam aquaculture?

- SATMAR hatchery cohort produced in May 2016 (mass spawning), potential of 1479 crosses
- Families raised together as a single mixed group

- At 1.5 yrs, batches of >10 000 F1 seeded in two grow-out zones
- Marennes: protected ponds with no recorded instances of disease
- Chioggia: lagoon grow-out zone with a historic prevalence 80-100% of *P. olseni*

- Phenotype recording and DNA sampling for ca. 1 000 individuals per site
- Traits of interest to production: weight, length, yield, color, sex, and parasite load (Chioggia)

- Use of 245-SNP array developed within VIVALDI for genotyping and parentage assignment
- Evaluate family representation and estimate genetic parameters of recorded traits

Parentage assignment

Estimations of genetic parameters

	Marennes h ²	Chioggia h²
Total weight	0.46 [0.11]	0.23 [0.11]
Shell length	0.42 [0.10]	0.29 [0.13]
Shell height	0.41 [0.11]	0.25 [0.13]
Shell width	0.39 [0.10]	0.30 [0.12]
Tissue weight	0.33 [0.10]	0.19 [0.10]
Yield	0.29 [0.10]	0.18 [0.08]
Sex	-	0.42 [0.19]
Parasite load <i>Perkinsus olseni</i>	-	0.52 [0.22]

Seemingly a genetic component associated with sex

• Maternal or paternal effect on sex determinism?

- Medium heritability estimates across all traits
- Higher heritability in Marennes
- Parasite load appears heritable and a potential candidate for selection

Estimations of genetic parameters

	Marennes h ²	Chioggia h ²	Genetic correlation	
Total weight	0.46 [0.11]	0.23 [0.11]	0.54 [0.26]	
Shell length	0.42 [0.10]	0.29 [0.13]	0.67 [0.21]	
Shell height	0.41 [0.11]	0.25 [0.13]	0.62 [0.67]	
Shell width	0.39 [0.10]	0.30 [0.12]	0.51 [0.43]	
Tissue weight	0.33 [0.10]	0.19 [0.10]	0.04 [0.36]	
Yield	0.29 [0.10]	0.18 [0.08]	0.30 [1.87]	
Sex	_	0.42 [0.19]		
Parasite load Perkinsus olseni	-	0.52 [0.22]		

No significant correlations between the two sites

- GxE effect?
- Does the presence of the pathogen affect parameters for other traits?

Low number of assignments affect precision of the estimates

Genetic gain: a simulation for total body weight

Lack of genetic correlation between sites: does selection have to be sitespecific?

Different selection strategies compared

=> Clams selected in Marennes and reared in Chioggia show 11.1% gain in total weight Example of genetic gain for total weight according to different selection strategies in the sites studied

Estimations of genetic parameters

	Length	Height	Width	Tissue weight	Yield	Sex	Perkinsus olseni load
Total weight	0.90 [0.07]	0.76 [0.28]	0.97 [0.03]	0.84 [0.14]	-0.19 [0.39]	0.06 [0.65]	-0.26 [0.40]
Length		0.81 [0.24]	0.80 [0.12]	0.79 [0.16]	-0.10 [0.38]	0.11 [0.72]	0.16 [0.41]
Height			0.87 [0.11]	0.90 [0.11]	0.06 [0.37]	0.07 [0.62]	-0.15 [0.40]
Width				0.86 [0.12]	-0.08 [0.37]	0.08 [0.56]	-0.35 [0.31]
Tissue weight					0.46 [0.32]	0.11 [0.18]	-0.14 [0.19]
Yield					-	0.00 [0.09]	-0.02 [0.58]
Sex							0.22 [0.26]

Genetic correlations for traits measured in Chioggia, Italy.

- Strong correlations between growth traits
- Yield, parasite load and sex appear show no correlation with growth traits

=> Selection objectives can include multiple traits without negatively affecting resistance/growth

Conclusions and perspectives

Parentage assignment

- High parent representation despite low assignment
- Maintain genetic variability through mass spawning

Estimations of genetic parameters for resistance and growth

- Moderate heritability estimates across traits
- Selection has potential to increase genetic gain, even across sites
- No correlations between growth traits and resistance
- Dual selection growth/resistance

Estimations need to be validated with higher assignment capacity

This project has received funding from the European Union's Horizon 2020 Research and innovation programme under grant agreement N° 678589

Morgan Smits morgan.smits@phd.unipd.it

University of Padova – Campus Agripolis 35020 Legnaro (PD) / ITALY