Modelling spatial interactions for bivalve aquaculture

Cedric Bacher cedric.bacher@ifremer.fr

Mathematical Modelling

Definition

- Representation of a system = set of interactions between elements
- > Simplification
- Designed to address a question
- Mathematical formulation of rules

From Piou and Bommel

Scales, ecological questions, management applications

Scale	Drivers	Concepts	Modelling question	Issue
 Individual and farm Time = year 	 Temperature Food Density of cultivated species 	 Dynamic Energy budget Food Depletion 	 Individual growth Farm production 	 Site selection for aquaculture Optimisation of farm design Marine spatial planning

Example = Marine Spatial Planning for oyster aquaculture in Normandy (Gangnery et al., in prep)

> Simulation of oyster growth (DEB model)

Example = Marine Spatial Planning for oyster aquaculture in Normandy (Gangnery et al., in prep)

- Simulation of oyster growth (DEB model)
- Spatial constraints: Protected areas

Example = Marine Spatial Planning for oyster aquaculture in Normandy (Gangnery et al., in prep)

- Simulation of oyster growth (DEB model)
- Spatial constraints:
 Protected areas
- Spatial constraints: Shipping zones

Example = Marine Spatial Planning for oyster aquaculture in Normandy (Gangnery et al., in prep)

- Simulation of oyster growth (DEB model)
- Spatial constraints: Protected areas
- Spatial constraints: Shipping zones
- Product: Spatial Information System for Aquaculture

SISAQUA visualization portal with offered options: metadata access and data downloading

Ecosystem functioning

- Space = farm within one management area
- Time = year

Drivers

- Temperature
- Hydrodynamics
- Density of cultivated species
- Food concentration

Concepts

- Epidemiological model
- Hydrodynamic connectivity
- Ecosystem functionning

Modelling question

- Factors controlling mass mortality
- Competition fo food

Issue

8

- Zoning
- Transfer of cultivated species
- Effect of climate change
- Carrying capacity

Example: role of connectivity to assess mortality of oysters (Lupo et al., in prep)

- > Oyster farms
- Mortality due to Vibrio aestuarianus
- Epidemiology model
- Transport of pathogens

Hydrodynamical model to simulate transport of particles (pathogens) (200 m X 200 m)

Mortality of oysters: role of connectivity

Hydrodynamical model to simulate transport of particles (pathogens) (200 m X 200 m)

Mortality of oysters: role of connectivity

10

Hydrodynamical model to simulate transport of particles (pathogens) (200 m X 200 m)

Mortality of oysters: role of connectivity

11

Mortality of oysters: role of connectivity

Hydrodynamical model to simulate transport of particles (pathogens) (200 m X 200 m)

Epidemiological farm model

Model based experiments with controlled temperature conditions

Variable	Description
S	Susceptible individuals (number)
Ε	Exposed (Infected by not infectious) individuals (number)
Ι	Infectious individuals (number)
D	Oyster mortality

Infection trajectories

Relation between time to reach 50% mortality and connectivity

16

		17		
Scale	Drivers	Concepts	Modelling question	Issue
• Space = habitat • Time = century	 Temperature Hydrodynamics Food concentration 	 Energy budget theory (full life cycle) Hydrodynamic connectivity Population dynamics 	 Factors controlling colonisation Response to climate change 	 Rate of colonisation Effect of climate change on recruitment

Example: response of colonisation rate of wild mussels to climate change (Thomas and Bacher, in prep):

- Agent based
 population model
 (ABM)
- Climate scenarios (RPC)

Response of colonisation rate to climate

Response of colonisation rate to climate

Response of colonisation rate to climate

Effects of global warming on population structure and dynamics

□ Steady state: local control due to competition for space

Inter-annual fluctuations: environmental forcing/biological traits

□Spatial differences

Differences beween temperature scenarios

Agent based model: an unifying framework

- **Definition (from Piou & Bommel)**
 - Mechanistic models that describe explicitly some unique and autonomous entities of a system
 - Importance of interactions: more than the sum of the parts
 - The dynamics emerge from the interactions among entities (agents, individuals, collectives...)
 - Complex systems: Set of components interacting in a non-linear way among them and with their environment
 - Stochastic properties
- □ Agents are discrete entities
 - Agents, even if from same species or same age, have some specificities (e.g. positions...)
 - Interactions among agents are mostly at local scales
 - Agents may decide and eventually adapt their behavior depending on their state and their environment
 - > Agents own history may have a very high importance
 - Knowledge emerge from agents' behaviors

Take home messages

- Spatial scales and resolution depend on physical, biological, social entities
- Ecological concepts allow modelling spatial interactions
 - Dynamic Energy Budget
 - > Species niche
 - Landscape ecology
 - > Connectivity
 - Epidemiology (SEIR)
- Agent based models (ABM) is an unifying framework for multiple scales modelling
 - Habitats : abiotic agents
 - Hosts, pathogens: biotic agents
 - Farmers and managers: human agents
- Novel tools to analyse complex spatial networks: network analysis, connectivity matrix

