

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

Genomic Approaches to Selective Breeding for Disease Resistance in Pacific Oysters (*Crassostrea Gigas*)

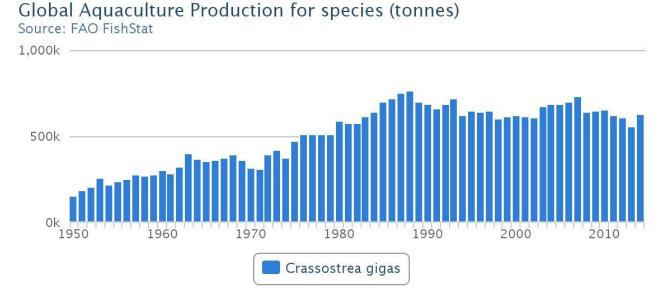
Alejandro Gutierrez¹, Oswald Matika¹, Chantelle Hooper², Craig Stenton², Matthew Sanders², Richard Paley², Serean Adams³, Konstanze Steiner³, Jane Symonds³, Tim Bean² & <u>Ross Houston¹</u>

1. The Roslin Institute, University of Edinburgh, UK. 2. Centre for Environment Fisheries and Aquaculture Science, UK. 3. Cawthron Institute, NZ

Vivaldi Workshop, Montpellier, 29th August 2018

Outline

- i. Oyster aquaculture and disease
- ii. Creating an oyster SNP chip
- iii. Oyster Herpes Virus experiments
- iv. Genetic basis of host resistance
- v. Applications of genomic selection



Background

- Pacific oyster (Crassostrea gigas)
 - Species of global importance to aquaculture

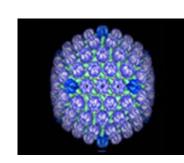
- Widely introduced to Europe and America: fast growing and robust
- Substantial and expanding genomic toolbox

Background

- Pacific oyster aquaculture: threat of infectious disease
 - Mass mortality in juveniles due to Oyster Herpes Virus (OsHV-1)
 - Virulent form (micro variant) emerged in last 10 years
 - Biosecurity measures limited efficacy to prevent outbreaks

A deadly herpes virus is threatening oysters around the world

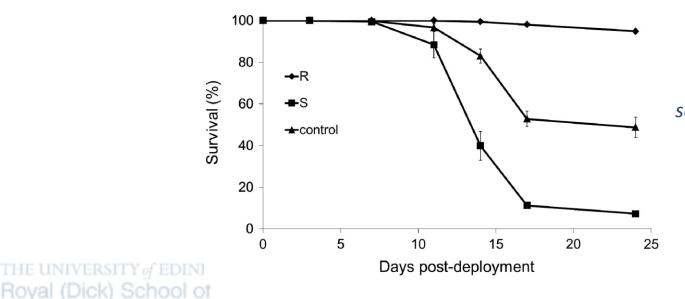
Colleen Burge courts systems on an syster aquaculture lease in California. Collin Cosek, CC BY46 Veterinary Studies


OutdoorHub Reporters 2 weeks ago

G

Oysters Can in Fact Get Herpes, And It's Killing Them in Droves

176 Shares



f SHARE V THEET BBSRC

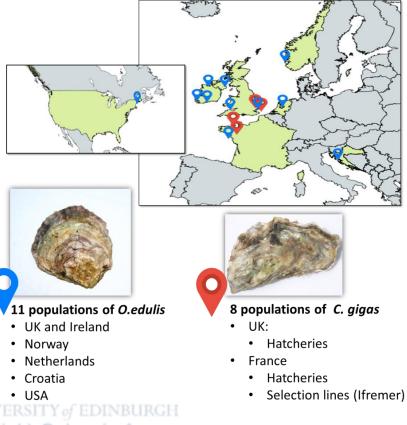
Background

Veterinary Studies

- Host resistance to OsHV has a large genetic component
 - Heritability estimates in field & lab up to 0.6 (Degremont et al. 2015)
 - High genetic correlation between field and lab r_G~0.7 (Degremont *et al.* 2015)
- Selective breeding has potential to produce resistant stocks

From Degremont (2011): Survival rate in a 'field' trial of samples from C. gigas lines derived from 4 generations of selection: Resistant (R), Susceptible (S) and Control lines

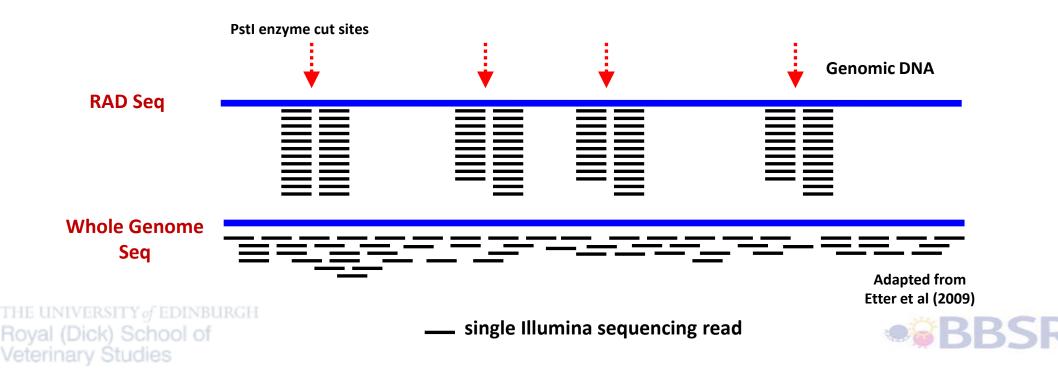
- Commercial-scale genetic improvement of *C. gigas*
 - Reliance on hatchery stocks commonplace
 - Family-based programmes underway in France, Australia, N.Z....
 - Genomic tools not yet routinely applied
- Our aims:
 - i. To create a SNP array for efficient genome-wide genotyping of Pacific and European oysters
 - ii. To assess the genetic architecture of host resistance to OsHV-1
 - iii. To test and develop cost-effective genomic selection for oysters



SNP Array

Population samples for sequencing and SNP discovery

Species	Country	Site	Number
O_edulis	Croatia	Croatia	14
O_edulis	England	Mersea	15
O_edulis	France	Baie de Quiberon	15
O_edulis	Ireland	Rossmore (Cork)	15
O_edulis	Ireland	Tralee	13
O_edulis	Ireland	Lough Foyle	15
O_edulis	USA	Damariscotta, Maine	14
O_edulis	Netherlands	Lake Grevelingen	15
O_edulis	N. Ireland	Larne	14
O_edulis	Norway	Sveio	15
O_edulis	Swansea	Swansea Bay	15
C_gigas	France	Ifremer selection lines	16
C_gigas	France	France Turbot	29
C_gigas	France	Vendée Naissain	26
C_gigas	France	Novostrea	29
C_gigas	France	SATMAR	28
C_gigas	UK	Guernsey Sea Farms	47
C_gigas	UK	Sea Salter	13
C_gigas	UK	Maldon	15



SNP Array

- Sequencing strategy for SNP discovery
 - Single libraries of pooled genomic DNA from each population
 - *C. gigas* → whole genome Illumina resequencing (reference genome), ~70x
 - *O. edulis* → RAD sequencing, *Pst*I enzyme (reference-free), ~100x

Gutierrez et al. 2017, G3, 8: 1273-80

	Sample N	MAF > 0					
		# SNPs	Average MAF		Sample N	# SNPs	Average MAF
UK (combined) ^a	56	27,313	0.186	Croatia	9	8,474	0.234
GSF + parents	38	26,549	0.19	Foyle_IRL	10	10,013	0.224
Maldon	9	22,079	0.216	Grevelingen_NLD	10	9,946	0.224
Sea Salter	9	22,821	0.214	Larne_NIRL	10	8,927	0.231
Average within UK populations ^b		23,816	0.207	Mersea_UK	10	9,980	0.224
France (combined) ^a	52	26,891	0.182	Quiberon_FR	10	9,973	0.226
lfremer	13	23,010	0.203	Rossmore_IRL	10	9,846	0.228
Hatchery 1	10	21,479	0.217	Sveio_NOR	10	9,118	0.226
Hatchery 2	10	20,141	0.221	Swansea_UK	9	9,696	0.224
Hatchery 3	10	21,730	0.215	Tralee_IRL	10	9,980	0.219
Hatchery 4	9	22,052	0.214	Maine_USA	10	9,614	0.221
Average within French populations ^b	,	21,682	0.214	Average within population ^a		9,597	0.225
All populations (combined) ^a	108	27,697	0.182	All populations (combined) ^b	108	11,151	0.210

Informative C. gigas SNPs

Informative O. edulis SNPs

Validated in several populations and families

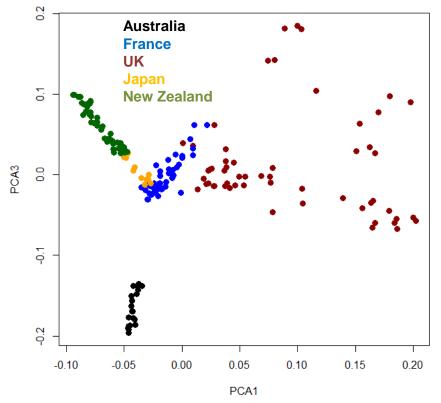
Combined species SNP array created with ~50 K genetic markers •

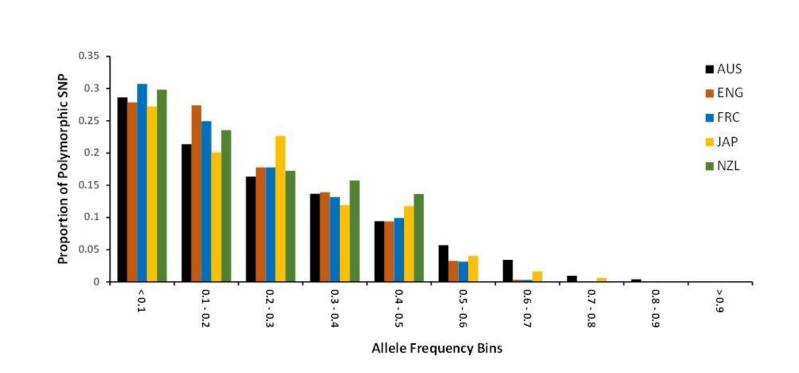
- Candidate SNPs on array: ~35K for *C. gigas,* and ~15K for *O. edulis*

MAE > 0

Royal (Dick) School of

- Combined species oyster SNP array created with ~50 K genetic markers
 - Freely available to purchase from ThermoFisher (Axiom technology) ~30 Euro
 - Being tested / used by researchers in several countries

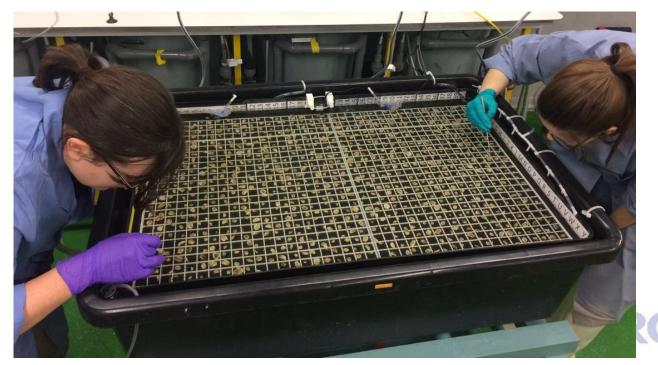



SNP Array

ROSLN

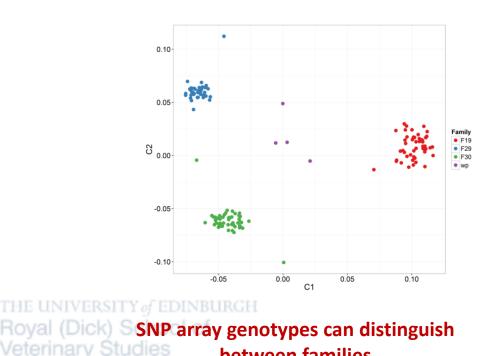
Courtesy of James Kijas, CSIRO

• Study of genetic diversity of Pacific oyster samples

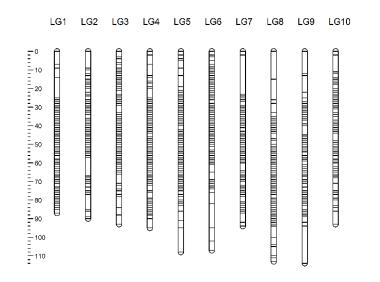


SNPs highly informative in oyster populations around the world

- Disease challenge study with Oyster Herpes Virus (OsHV-1)
 - Three large oyster families (each n = 60)
 - Oysters batch spawned from 28 parents (n = 820, family assignment by genotyping)
- Recently settled oyster spat (~2months) bath challenged
 - Single large tank
 - Grid structure
 - Flow-through system
 - Aeration and mixing



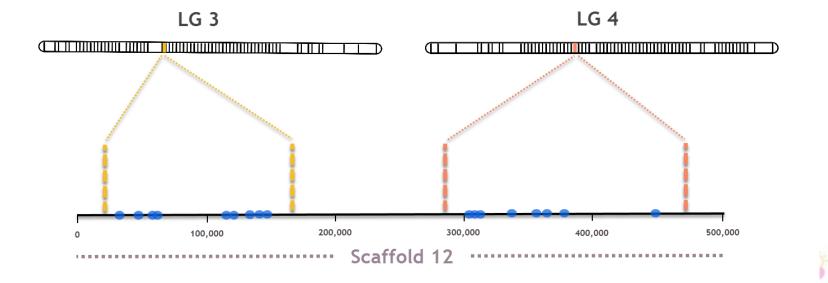
Cefas



THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

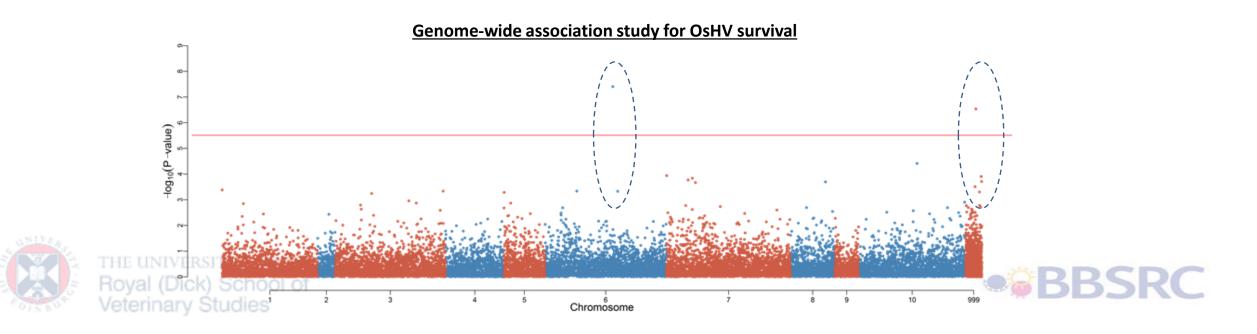
- Samples of mortalities and survivors for genotyping ullet
 - **Overall mortality rate ~ 20 %** ۲
 - Genomic DNA extracted from all samples and parents & genotyped for array
 - Defining family structure and mapping the oyster genome

between families



Family material used to build high density (~20K) linkage map of oyster genome

- High density linkage map highlighted issues with *C. gigas* genome assembly
 - ~40% of scaffolds mapped to >1 linkage group
 - Consistency with earlier linkage map of Hedgecock et al. (2015)


Example of reference genome scaffold mapping to two linkage groups

- GWAS for OsHV resistance in oysters
 - Heritability of resistance (underlying liability scale) = 0.25
 - Individual loci (QTL) affecting resistance to herpes virus
 - Both survival and viral load affected by gene(s) on Chromosome 6
 - Candidate gene on Chr6: *RAN Binding Protein 9-like gene* (Interferon γ signalling)

- Application in UK oyster hatchery production
 - Sampling and testing broodstock oysters using targeted low density SNP panel
 - Avoidance of inbreeding and selection for resistance markers

(i)

Oyster tagged

- Dorsal section of left valve ground away
- Each oyster tagged with unique identifier

Tissue biopsied

- Loose shell removed from anterior side of oyster.
- Tissue removed through the small gap between valves.
- Most oysters recover in 2-3 days. Some mortalities (<5%).

- Application in UK oyster hatchery production •
 - Sampling and testing broodstock oysters using targeted low density SNP panel
 - **Avoidance of inbreeding and selection for resistance markers**

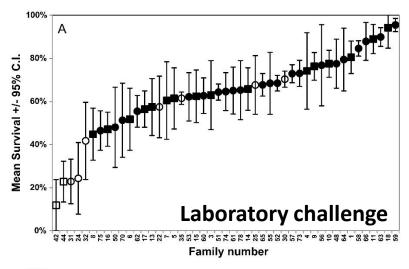
(ii)

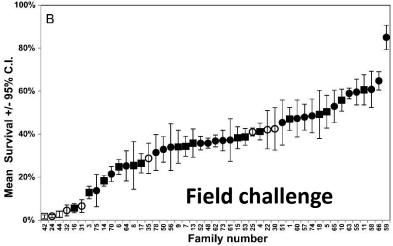
SNP panel analysed

96 SNPs analysed through allele specific PCR.

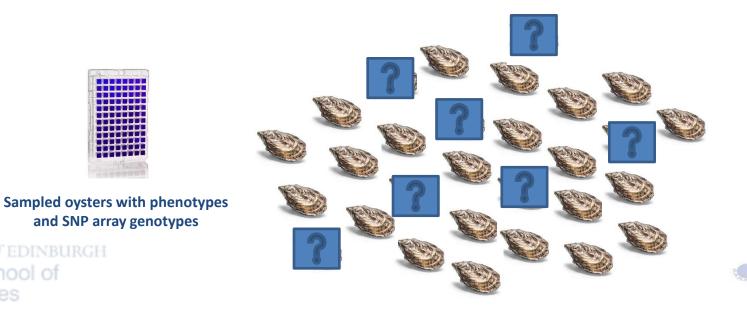
Data transferred to hatchery and to geneticists.

Breeding strategy designed

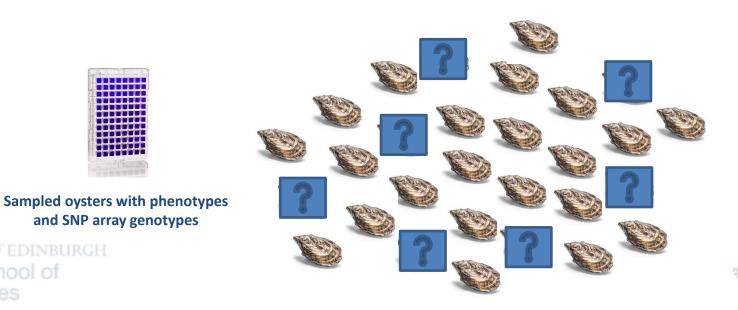

- **Breeding patterns** recommended.
- Commercial spat production continues.
- Next generation of broodstock produced.



- OsHV resistance in an independent population
 - 31 families OsHV challenged at Cawthron in 2015
 - Based on challenge model described in Camara et al. 2017, Aquaculture, 469:50-58 (validated in field)
 - Genotyped using SNP array (n~800): ~24K informative *C. gigas* SNPs
 - Animal model, probit link function (binary survival)
 - Heritability estimate for OsHV resistance in genotyped animals (using G Matrix) = 0.44 (0.05)
 - GWAS and genomic prediction analyses (ongoing)

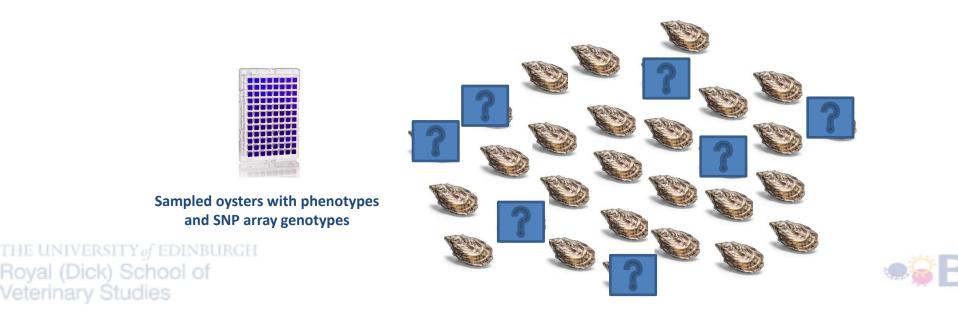


- Testing genomic prediction of herpesvirus resistance in oysters
 - Split population into training (80%) and validation (20%) sets
 - Mask the phenotypes of the validation sets
 - Use the genomic prediction model trained on the 80% to predict the 20% (GBLUP)
 - Repeat several times (5-fold cross validation), adjusted correlation (r) between estimated breeding value and trait value of masked individuals

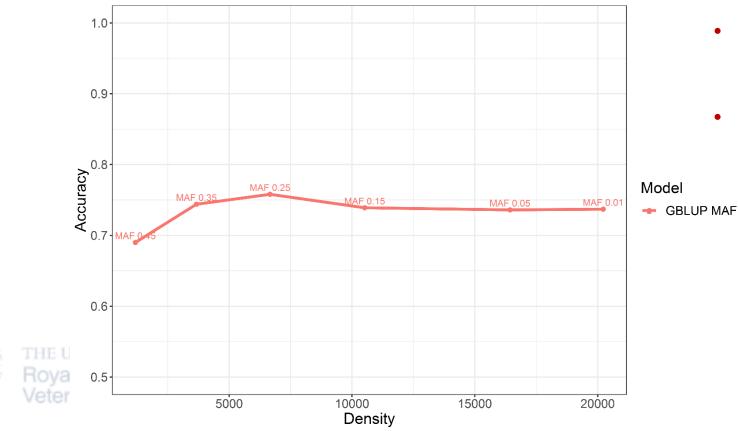


Roval (Dick) School of

- Testing genomic prediction of herpesvirus resistance in oysters
 - Split population into training (80%) and validation (20%) sets
 - Mask the phenotypes of the validation sets
 - Use the genomic prediction model trained on the 80% to predict the 20% (GBLUP)
 - Repeat several times (5-fold cross validation), adjusted correlation (r) between estimated breeding value and trait value of masked individuals



Roval (Dick) School of



- **Testing genomic prediction of herpesvirus resistance in oysters** lacksquare
 - Split population into training (80%) and validation (20%) sets
 - Mask the phenotypes of the validation sets
 - Use the genomic prediction model trained on the 80% to predict the 20% (GBLUP)
 - Repeat several times (5-fold cross validation), adjusted correlation (r) between estimated breeding value and trait value of masked individuals

- Testing genomic selection for selective breeding in oysters
 - Genomic prediction (GBLUP) accuracies with varying SNP densities
 - Prediction accuracy substantially higher than with pedigree (pedigree h2 lower)

- Low SNP density (<1000 SNPs) = improved prediction accuracy
- Promising for cost-effective genomic prediction in oyster breeding

Conclusions / Discussion

- Combined species 50K SNP array for *C. gigas* and *O. edulis*
 - Highly informative in *C. gigas* populations tested across the globe
 - Effective for detecting population and family structure
- Oyster Herpes Virus resistance is controlled by several QTL
 - Moderately heritable oligogenic trait
 - Promising markers / genomic regions for further study
- Genomic prediction effective with low marker density
 - Markedly higher prediction accuracy than pedigree, even with <1,000 SNPs
 - Potential for combined parentage / genomic prediction panel?

Acknowledgements

Cefas

Natalie Lowe Carolina Penaloza **Steve Bishop**

Mike Gubbins

Karim Gharbi **Richard Talbot**

Guernsey Sea Farms: Mark Dravers

James Kijas Sean McWilliam **Curtis Lind** Peter Kube

Institute for East China Sea Research

Kiyoshi Soyano

SYSAAF:

Ifremer

Paulo Prodohl

Lionel Dégremont Sylvie Lapegue Jean-Baptiste Lamy **Pierre Boudry Tristian Renault**

Pierrick Haffray

Dennis Hedgecock

ross.houston@roslin.ed.ac.uk

@RossHouston

